Aprendiendo De Las Potencias En Matemática

Nombre:	Curso: 1°	Fecha:	
			\bigcirc

OBJETIVOS DE APRENDIZAJES: Mostrar que comprenden las potencias de base racional y exponente entero: Transfiriendo propiedades de la multiplicación y división de potencias a los ámbitos numéricos correspondientes.

¿Qué es una potencia?

Es la operación **matemática** mediante la cual multiplicamos un número por sí mismo las veces que nos indique el exponente.

$$2^3 = 2 \times 2 \times 2 = 8$$

I.- Completa la tabla identificando las partes de las potencias:

Potencia	Multiplicación	Valor de la potencia	Base	Exponente
(-2)6	-2 · -2 · -2 · -2 · -2	64	-2	6
	5.5.5.5			
$(-6)^5$				
			2	3
$\left(\frac{1}{4}\right)^3$				
$\left(-\frac{2}{3}\right)^3$				
	$\frac{3}{2} \cdot \frac{3}{2} \cdot \frac{3}{2} \cdot \frac{3}{2}$			

Escribe cada expresión en notación exponencial:

Ejemplo : 5 · 5 · 5 · 5 = <u>5</u>⁴

a) 10 · 10 · 10 = _____

c) $x \cdot x \cdot x =$

d) $2 \cdot 2 \cdot 2 \cdot 2 \cdot 2 \cdot 2 =$ _____

e)
$$x^2 \cdot x^2 \cdot x^2 \cdot x^2 \cdot x^2 \cdot x^2 \cdot x^2 =$$

f) $\frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} =$

Exprese como multiplicación de potencia:

Ejemplo: 3³= <u>3 · 3 · 3</u>

a) (-5)²= _____

b) -6²= _____

c) (-7)⁴=

d) $-(-4)^7 =$

e) 2¹⁰=_____

f) $\left(\frac{2}{3}\right)^3 =$ ______

Calcule el valor de las siguientes potencias:

Ejemplo $2^4 = 2 \cdot 2 \cdot 2 \cdot 2 = 16$

a)
$$5^3 =$$

b)
$$6^5 =$$

c)
$$(-2)^6 =$$

d)
$$-2^4 =$$

e)
$$-(-2)^3 =$$

f)
$$-5^3 =$$

g)
$$\left(\frac{1}{2}\right)^3 =$$

h)
$$\left(\frac{5}{4}\right)^2 =$$

i)
$$\left(-\frac{2}{5}\right)^2 =$$

$$j) \quad \left(-\frac{6}{5}\right)^3 =$$

¿Cuáles son las propiedades de la potencia?

Propiedades De La Potencia						
Potencias con	a ⁰ =1	Todo exponente cero, tiene como resulta				
exponente cero		de la potencia uno.				
Potencias con		Todo exponente elevado a uno tiene				
exponente uno.	a ¹ =a	como resultado de la potencia la misma base.				
Producto de potencia		El producto de dos potencias de igual				
de igual base y	a ^m ⋅a ⁿ = a ^{m+n}	base tiene como resultado de la potencia,				
diferentes exponentes		la misma base y en su exponente es la suma de los exponentes.				
cociente de potencias	$\frac{a^m}{a^n} = a^{m-n}$	El cociente de dos potencias de igual				
con la misma base y	$\frac{\overline{a^n}}{a^n}$ – a	base tiene como resultado de la potencia,				
diferentes exponentes		la base y la restan los exponentes.				
Potencia de potencia	$(a^m)^n = a^{m \cdot n}$	El producto de una potencia elevada a				
		otra potencia tiene como resultado la				
		base con la multiplicación de los				
		exponentes.				
Producto de potencia	$a^nb^n=(a\cdot b)^n$	El producto de potencia de igual				
con diferentes bases e		exponente tiene como resultado la				
igual exponente		multiplicación de las bases y se mantiene				
	a n .a. n	su exponente				
cociente de potencia	$\frac{a^n}{h^n} = \left(\frac{a}{h}\right)^n$	El cociente de potencia de igual				
con diferentes bases e	$b^n \setminus b^j$	exponente tiene como resultado la				
igual exponente		división de las bases y se mantiene su				
Potencias con	1	exponente.				
exponente negativo	$a^{-n} = \frac{1}{a^n}$	Para resolver una potencia con exponente negativo, primero se remplaza				
exponente negativo	a^n	la base por el inverso multiplicativo de				
	$\left(\frac{a}{b}\right)^{-n} = \left(\frac{b}{a}\right)^n$	dicho número.				

Aplique potencias con exponente cero:

Ejemplo 10⁰=1

a)
$$2^0 =$$

b)
$$-3^{0}=$$

$$c)$$
 (-50)0=

d)
$$-(-100)^0=$$

e)
$$\frac{2^0}{3^0}$$
 =

c)
$$(-50)^0 =$$

d) $-(-100)^0 =$
e) $\frac{2^0}{3^0} =$
f) $\left(\frac{5}{2}\right)^0 =$

Aplique propiedad de producto de potencia de igual base y diferentes exponentes:

Ejemplo: $2^3 \cdot 2^7 = 2^{3+7} = 2^{10}$

a)
$$(-7)^2 \cdot (-7)^3 =$$

b)
$$(E)^5 \cdot (E)^6 =$$

c)
$$(0,34) \cdot (0,34)^2 =$$

d)
$$(-2)^3 \cdot (-2)^0 =$$

e)
$$\left(\frac{2}{5}\right)^{-3} \cdot \left(\frac{2}{5}\right)^{5} =$$

f)
$$\left(\frac{7}{2}\right)^2 \cdot \left(\frac{16}{21}\right)^2 =$$

g)
$$\left(\frac{6}{7}\right)^{-5} \cdot \left(\frac{2}{35}\right)^{-5} =$$

Aplique la propiedad del cociente de potencias con la misma base y diferentes exponentes:

Eiemplo: $2^3: 2^7 = 2^{3-7} = 2^{-4}$

a)
$$(-7)^2 : (-7)^3 =$$

b)
$$(E)^5 : (E)^6 =$$

c)
$$(0,34)$$
: $(0,34)^2$ =

d)
$$(-2)^3$$
: $(-2)^0$ =

d)
$$(-2)^3$$
: $(-2)^0$ =
e) $(\frac{2}{5})^{-3}$: $(\frac{2}{5})^5$ =

f)
$$\left(\frac{7}{2}\right)^2 : \left(\frac{16}{21}\right)^2 =$$

g)
$$\left(\frac{6}{7}\right)^{-5}: \left(\frac{2}{35}\right)^{-5} =$$

Aplique la propiedad de potencia de potencia:

 $(51)^2 = 5^{1\cdot 2} = 5^2$ Ejemplo

a)
$$(-34)^2 =$$

b)
$$(200)10 =$$

c)
$$((-2)^5)^7 =$$

d)
$$-(2^2)^3 =$$

e)
$$(15)^7 =$$

f)
$$(43)^3 =$$

g)
$$\left(\left(\frac{2}{5}\right)^3\right)^8 =$$

Aplique la propiedad de producto de potencia con diferentes bases e igual exponente

Eiemplo $3^5 \cdot 2^5 = (3 \cdot 2)^5 = 6^5$

a)
$$10^2 \cdot 5^2 =$$

b)
$$(-4)^3 \cdot 6^3 =$$

c) $-9^4 \cdot 7^4 =$

c)
$$-9^4 \cdot 7^4 =$$

d)
$$\left(\frac{1}{2}\right)^7 \cdot \left(\frac{2}{3}\right)^7 =$$

e)
$$\left(\frac{-5}{8}\right)^{-2} \cdot \left(\frac{4}{3}\right)^{-2} =$$

f)
$$\left(\frac{3}{4}\right)^0 \cdot \left(-\frac{1}{3}\right)^0 =$$

g)
$$(0.2)^7 \cdot (1.5)^7 =$$

Aplique la propiedad del cociente de potencia con diferentes bases e igual exponente

Ejemplo $9^5: 3^5 = (9:3)^5 = 3^5$

a)
$$10^2:5^2=$$

b)
$$(-4)^3:12^3=$$

c)
$$-21^4:7^4=$$

d)
$$\left(\frac{1}{2}\right)^7 : \left(\frac{2}{3}\right)^7 =$$

e)
$$\left(\frac{-5}{8}\right)^{-2}$$
: $\left(\frac{4}{3}\right)^{-2}$ =

f)
$$\left(\frac{3}{4}\right)^0 : \left(-\frac{1}{3}\right)^0 =$$

g)
$$(0.6)^7$$
: $(0.2)^7$ =

Aplique propiedad del exponente negativo y calcular:

 $\left(\frac{3}{2}\right)^{-2} = \left(\frac{2}{3}\right)^2 = \frac{2}{3} \cdot \frac{2}{3} = \frac{4}{9}$

a)
$$\left(\frac{5}{6}\right)^{-1} =$$

b)
$$\left(\frac{7}{2}\right)^{-3} =$$

c)
$$\left(-\frac{1}{3}\right)^{-1} =$$

d)
$$\left(-\frac{4}{7}\right)^{-2} =$$

e)
$$(-2)^{-3}$$
=

Resuelve cada una de las siguientes potencias:

Ejemplo
$$4^2 + 5^2 = 16 + 25 = 41$$

a)
$$6^3 - 4^3 =$$

b)
$$(-3)^3 - 8^2 =$$

c) $2^4 + 7^2 =$

c)
$$2^4 + 7^2 =$$

d)
$$12^2 - 11^2 =$$

e) $5^3 - (-6)^3 =$

e)
$$5^3 - (-6)^3 =$$

Resuelve cada uno de los siguientes ejercicios:

Ejemplo
$$\frac{2^3 \cdot 2^5}{2^6} = 2^{3+5-6} = 2^2 = 4$$

$$f) \quad \frac{6^3 \cdot 6^7}{6^4 \cdot 6^6} =$$

g)
$$\frac{5^3 \cdot 5^{-2}}{5^8 \cdot 5^7} =$$

h)
$$\frac{8^9 \cdot 8^{-2}}{8^{10} \cdot 8^{-8}} =$$

i)
$$\frac{(2^3)^4 \cdot (2^{-1})^2}{(2^2)^4} =$$

$$j) \quad \frac{\left(5^4\right)^2 \cdot \left(5^3\right)^{-2}}{\left(5^{-2}\right)^3 \cdot 5^{-4}} =$$