

Guía N° 4 Síntesis de guías anteriores

Asignatura: Física Nivel: 2° Medio

Contacto del docente y horario: mariana.muñoz@politecnicosanluis.cl / martes, miércoles y jueves de 9:00 - 16:00

Instrucciones:

- Utilizando las guías trabajadas con antelación, responde las siguientes preguntas en tu cuaderno.
- Inicia escribiendo el título de la guía en tu cuaderno; Guía N°4: Síntesis de guías anteriores.

I.- ITEM DE ELECCIÓN ÚNICA. Encierra con un círculo la letra de la alternativa correcta.

- 1.- Una magnitud en física es:
- A) lo medible
- B) lo bello
- C) lo observable
- D) lo invisible
- 2.- Una pipeta, un vaso graduado o una jeringa sirven para determinar:
- A) la masa
- B) el tiempo
- C) el volumen
- D) la longitud
- 3.- El metro cubico es la unidad del sistema métrico decimal de:
- A) la capacidad
- B) la superficie
- C) el volumen
- D) el tiempo
- 4.- La unidad de masa, en el sistema internacional, es:
- A) La tonelada
- B) el kilogramo
- C) el gramo
- D) el miligramo
- 5.- La medida que se toma como unidad en cualquier magnitud se le puede llamar:
- A) múltiplo
- B) equivalente
- C) instrumento
- D) patrón
- 6.- La magnitud de dos dimensiones largo y ancho determina espacios planos y es:
- A) la superficie
- B) el tiempo
- C) el volumen
- D) la capacidad
- 7.- Uno de los principales elementos de la física es:
- A) el tamaño
- B) la medida
- C) la forma
- D) los trazos
- 8.- ¿Cuál de las siguientes alternativas corresponde a una magnitud derivada y escalar?
- A) Volumen
- B) masa
- C) tiempo
- D) longitud

9.- ¿Qué magnitud física se obtiene al combinar longitud y tiempo? A) volumen B) peso C) velocidad D) distancia 10.- Las unidades de medida del sistema internacional (S.I.) corresponden a: A) Metro, kilogramo, minuto B) Centímetro, gramo, segundo C) Metro, gramo, segundo D) Metro, kilogramo, segundo 11.- La unidad de medida de la longitud, en el sistema internacional, es: A) Metro B) kilometro C) centímetro D) milímetro 12.- Las magnitudes físicas que se caracterizan porque poseen módulo, dirección y sentido, se conocen como magnitudes: A) escalares B) vectoriales C) fundamentales D) derivadas 13.- ¿Cuál de las siguientes alternativas es incorrecta? A) 20 cm = 0.020 mB) 10 m = 1000 cmC) 16 mm = 0.00016 km D) 2,5 km = 2500000 mm 14.- ¿A cuánto equivale 16 cm en pie? A) 35,49 pies B) 65,38 pies C) 0,25 pies D) 0,52 pies 15.- ¿Cuántos milímetros hay en una regla de 15 centímetros? A) 1,5 mm B) 150 mm C) 1500 mm D) 0,15 mm 16.- ¿A cuántos metros corresponden 25 centímetros? A) 0.025 m B) 0.25 m C) 2.5 m D) 250 m 17.- Si quieres expresar tu edad en meses. ¿Qué operación debes realizar? A) dividir por 12 B) dividir por 24 C) multiplicar por 24 D) multiplicar por 12 18.- ¿Cuántas horas hay en siete días? A) 240 hr. B) 168 hr. C) 3, 4 hr. D) 120 hr.

ITEM DE VERDADERO O FALSO.

Encierra con un círculo la letra $\underline{\mathbf{V}}$ si las afirmaciones son correctas y la letra	<u>F</u>	si las afirmaciones son fals	as. Justifica las falsa	as
escribiendo la palabra correcta en el espacio asignado.				

			La masa y el tiempo son magnitudes <u>fundamentales</u> .
			El <u>volumen</u> es una magnitud fundamental.
			Las <u>magnitudes derivadas</u> se obtienen de las magnitudes fundamentales.
			Las <u>magnitudes</u> <u>físicas</u> son características que pueden ser definidas de forma numérica.
			La <u>medición</u> de las diferentes magnitudes se realiza por medio de instrumentos calibrados.
			El tiempo es una magnitud <u>derivada</u> .
			Las magnitudes <u>fundamentales</u> son aquellas que no se pueden definir en función de ninguna otra magnitud.
26 <u>unid</u>			El Sistema Internacional de Unidades surgió para intentar que todas las regiones del mundo utilizasen las mismas
			La unidad de medida del tiempo en el Sistema Internacional es la <u>hora</u> .
28	V 	F	La unidad de medida de la masa en el Sistema Internacional es el <u>Kilogramo</u> .
29	V 	F	Si medimos la estatura de una persona, la magnitud física que estamos midiendo se conoce como longitud.
30	V 	F	La unidad de medida del tiempo, en el (S.I.), es el <u>segundo</u> .
			Magnitud es todo lo que se puede medir.
			El velocímetro es un instrumento que permite medir la <u>velocidad</u> de un móvil.
33	V 	F	El desplazamiento es una magnitud <u>escalar</u> .
			La rama de la Física que se encarga de estudiar el porqué del movimiento de los cuerpos, se conoce como <u>dinámica</u> .

35 V F Un cuerpo que no cambia su posición a medida que transcurre el tiempo, se dice que está en <u>reposo</u> .
36 V F Si la tierra está en movimiento, en este momento, tú también te encuentras en movimiento respecto al sol, pero en <u>reposo</u> respecto a ella.
37 V F Si un automóvil pasa frente a tu casa, su conductor se encuentra en <u>reposo</u> respecto a ti.
38 V F La <u>rapidez</u> de un móvil se puede calcular dividiendo la distancia recorrida por un móvil y el tiempo que demora en recorrerla.
ITEM DE ELECCIÓN. Encierra con un círculo alargado la palabra correcta que se encuentra dentro del paréntesis, para que la afirmación sea verdadera.
39 Un ejemplo de movimiento (uniforme - variado) es el que realiza el minutero de un reloj al indicar el paso del tiempo.
40 El disparo de un proyectil es un movimiento de tipo (rectilíneo - curvilíneo).
41 (El desplazamiento - la trayectoria) se define como la línea recta que une el punto inicial con el punto final de un recorrido.
42 El movimiento de los planetas en torno al sol es (uniforme curvilíneo - variado curvilíneo).
43 Un ejemplo de movimiento (uniforme - variado) es el que realiza el minutero de un reloj al indicar el paso del tiempo.
44 Si la Tierra es un punto de referencia, las Pirámides de Egipto se encuentran en (movimiento - reposo).
45 Las características del movimiento que realiza un lápiz que cae son (uniforme y rectilíneo - variado y rectilíneo).
46 La balanza es un instrumento que permite medir (la masa - el peso)
47 La velocidad es una magnitud física (escalar - vectorial) y la rapidez es una magnitud (escalar - vectorial).
48 Una pelota que cae verticalmente al suelo describe un movimiento (rectilíneo uniforme - rectilíneo variado).